用数学归纳法证明:1-3+5-7+...+(-1)^N-1(2N-1)=(-1)^N-1*N

1个回答

  • 解假设n=k命题成立

    即1-3+5-7+...(-1)^(k-1)(2k-1)=(-1)^(k-1)*k

    那么当n=k+1时,

    1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2(k+1)-1)

    =1-3+5-7+...(-1)^(k-1)(2k-1)+(-1)^(k)(2k+1)

    =(-1)^(k-1)*k+(-1)^(k)(2k+1)

    =(-1)^(k-1)*k+(-1)^(k-1)*(-1)^(1)(2k+1)

    =(-1)^(k-1)*k+(-1)^(k-1)*(-2k-1)

    =(-1)^(k-1)[k+(-2k-1)]

    =(-1)^(k-1)[-k-1]

    =(-1)^(k-1)(-1)^(1)[k+1]

    =(-1)^(k)(k+1)