设数列﹛a(n)﹜的n项和为Sn,已知a1=1,Sn+1=4a(n)+2,求:设b(n)=a(n+1)-2a(n),证明

1个回答

  • 证:

    S2=4a1+2=4×1+2=6

    n≥2时,

    S(n+1)=4an +2=4[Sn -S(n-1)]+2

    S(n+1)-2Sn +2=2Sn -4S(n-1)+4

    [S(n+1)-2Sn +2]/[Sn -2S(n-1) +2]=2,为定值.

    S2-2S1+2=6-2+2=6

    数列{S(n+1)-2Sn +2}是以6为首项,2为公比的等比数列.

    S(n+1)-2Sn +2=6×2^(n-1)=3×2ⁿ

    S(n+1)=2Sn +3×2ⁿ -2

    [S(n+1) -2]-(2Sn -4)=3×2ⁿ

    等式两边同除以2ⁿ

    [S(n+1)-2]/2ⁿ -(Sn -2)/2^(n-1) =3,为定值.

    (S1 -2)/2^0=(1-2)/1=-1

    数列{(Sn -2)/2^(n-1)}是以-1为首项,3为公差的等差数列.

    (Sn -2)/2^(n-1)=(-1)+3(n-1)=3n-4

    Sn=(3n-4)×2^(n-1) +2

    n≥2时,

    an=Sn -S(n-1)

    =(3n-4)×2^(n-1) +2-[3(n-1)-4]×2^(n-2) -2

    =(3n-1)×2^(n-2)

    n=1时,a1=(3-1)/2=1,同样满足.

    数列{an}的通项公式为an=(3n-1)×2^(n-2)

    b1=a2-2a1=S2-3a1=6-3=3

    bn=a(n+1)-2an

    =[3(n+1)-1]×2^(n+1-2) -2[(3n-1)×2^(n-2)]

    =3×2^(n-1)

    b(n+1)/bn=3×2ⁿ/[3×2^(n-1)]=2,为定值.

    数列{bn}是以3为首项,2为公比的等比数列.