证明:作DF∥AE交AB于F,
∴△ABC是正三角形,可得△FBD是正三角形
∴FB=DB=DF,AB-FB=BC-DB,AF=DC
∵DA=DE,∴∠DAE=∠E,∠FAD=∠CDE
在△AED和△DCE中
∴△AFD≌△DCE(SAS)
∴DF=CE,即BD=CE
证明:作DF∥AE交AB于F,
∴△ABC是正三角形,可得△FBD是正三角形
∴FB=DB=DF,AB-FB=BC-DB,AF=DC
∵DA=DE,∴∠DAE=∠E,∠FAD=∠CDE
在△AED和△DCE中
∴△AFD≌△DCE(SAS)
∴DF=CE,即BD=CE