三角形ABC中,已知cosA+cosB+cosC=3/2,用向量证明三角形ABC是等边三角形

1个回答

  • 方法1

    由余弦定理,(b^2+c^2-a^2)/(2bc)+(c^2+a^2-b^2)/(2ca)+(a^2+b^2-c^2)/(2ab)=3/2,

    去分母得,a(b^2+c^2-a^2)+b(c^2+a^2-b^2)+c(a^2+b^2-c^2)=3abc,

    ab^2+ac^2+bc^2+ba^2+ca^2+cb^2-6abc=a^3+b^3+c^3-3abc,

    a(b-c)^2+b(c-a)^2+c(a-b)^2=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]/2,

    ∴(b+c-a)(b-c)^2+(a+c-b)(c-a)^2+(a+b-c)(a-b)^2=0,

    在△ABC中,b+c-a>0,a+c-b>0,a+b-c>0,

    ∴a=b=c,△ABC为等边三角形.

    方法2

    cosA+cosB+cosC

    =2cos[(A+B)/2]cos[(A-B)/2]+1-2[sin(C/2)]^2

    =1+2sin(C/2)cos[(A-B)/2]-2[sin(C/2)]^2

    =1+2sin(C/2){cos[(A-B)/2]-sin(C/2)}

    =1+2sin(C/2){cos[(A-B)/2]-cos[(A+B)/2]}

    =1+4sin(C/2)sin(A/2)sin(B/2)

    显然,在△ABC中,sin(C/2)、sin(A/2)、sin(B/2)都是正数,

    ∴3[sin(C/2)sin(A/2)sin(B/2)]^(1/3)≦sin(C/2)+sin(A/2)+sin(B/2),

    当sin(C/2)=sin(A/2)=sin(B/2)时,取等号.

    在取等号时,sin(C/2)sin(A/2)sin(B/2)=sin30°sin30°sin30°=1/8.

    ∴cosA+cosB+cosC≦1+4/8=3/2.

    由题设,cosA+cosB+cosC=3/2,说明:sin(C/2)=sin(A/2)=sin(B/2),

    ∴△ABC是等边三角形.