令sinx+cosx=t,x∈[0,2π]
则t=√2sin(x+π/4)
t∈[-√2,√2]
t^2=1+2sinxcosx
则sinxcosx=(t^2-1)/2
y=(t^2-1)/(4+2t)
=[(t+2)^2-4(t+2)+3]/2(t+2)
=(t+2)/2+3/[2(t+2)]-2
令m=t+2,m∈[2-√2,2+√2]
由基本不等式得y=m/2+3/(2m)-2≥√3-2
当且仅当m=√3时等号成立
所以y的最小值是√3-2
令sinx+cosx=t,x∈[0,2π]
则t=√2sin(x+π/4)
t∈[-√2,√2]
t^2=1+2sinxcosx
则sinxcosx=(t^2-1)/2
y=(t^2-1)/(4+2t)
=[(t+2)^2-4(t+2)+3]/2(t+2)
=(t+2)/2+3/[2(t+2)]-2
令m=t+2,m∈[2-√2,2+√2]
由基本不等式得y=m/2+3/(2m)-2≥√3-2
当且仅当m=√3时等号成立
所以y的最小值是√3-2