函数f(x)=2sin(wx+π/3)(x∈R),f(α)=-2,f(β)=0|α-β|的最小值等于π/2,则正数ω的值为多少?
解析:∵函数f(x)=2sin(wx+π/3),f(α)=-2,f(β)=0
f(α)= 2sin(wα+π/3)=-2==>函数f(x)最小值点
f(β) =2sin(wβ+π/3)=0==>函数f(x)零点
∵|α-β|的最小值等于π/2
∴即函数1/4周期为:T/4=1/4*2π/w=π/(2w)=π/2==>w=1
函数f(x)=2sin(wx+π/3)(x∈R),f(α)=-2,f(β)=0|α-β|的最小值等于π/2,则正数ω的值为多少?
解析:∵函数f(x)=2sin(wx+π/3),f(α)=-2,f(β)=0
f(α)= 2sin(wα+π/3)=-2==>函数f(x)最小值点
f(β) =2sin(wβ+π/3)=0==>函数f(x)零点
∵|α-β|的最小值等于π/2
∴即函数1/4周期为:T/4=1/4*2π/w=π/(2w)=π/2==>w=1