数学必修五所有公式

1个回答

  • 等差数列的基本性质

    ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

    ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

    ⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.

    ⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

    ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .

    ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).

    ⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )

    ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

    ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

    ⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .

    5.等差数列前n项和公式S 的基本性质

    ⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).

    ⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .

    ⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .

    ⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .

    ⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).

    ⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.

    ⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.

    2.等比数列的基本性质

    ⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).

    ⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

    ⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .… ..

    ⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.

    ⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.

    ⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >0.

    ⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

    ⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

    等比数列前n项和公式S 的基本性质

    ⑴如果数列{a }是公比为q 的等比数列,那么,它的前n项和公式是S =

    也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.

    ⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .

    ⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵

    ⑷若数列{ a }为等比数列,则S ,S -S ,S -S ,…仍然成等比数列.

    ⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列 万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

    cos2α=(1-tan^2α)/(1+tan^2α) tan2α=2tanα/(1-tan^2α)

    升幂公式:1+cosα=2cos^2(α/2) 1-cosα=2sin^2(α/2) 1±sinα=(sin(α/2)±cos(α/2))^2

    降幂公式:cos^2α=(1+cos2α)/2 sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα, tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

    (2) sin(-α)= -sinα,cos(-α)=cosα, tan(-α)= -tanα,cot(-α)= -cotα

    (3)sin(π+α)= -sinα,cos(π+α)= -cosα, tan(π+α)=tanα,cot(π+α)=cotα

    (4)sin(π-α)=sinα,cos(π-α)= -cosα, tan(π-α)= -tanα,cot(π-α)= -cotα

    (5)sin(π/2-α)=cosα,cos(π/2-α)=sinα, tan(π/2-α)=cotα,cot(π/2-α)=tanα

    (6) sin(π/2+α)= cosα,cos(π/2+α)= -sinα,

    tan(π/2+α)= -cotα,cot(π/2+α)= -tanα

    (7)sin(3π/2+α)= -cosα,cos(3π/2+α)=sinα,

    tan(3π/2+α)= -cotα,cot(3π/2+α)= -tanα

    (8)sin(3π/2-α)= -cosα,cos(3π/2-α)= -sinα,

    tan(3π/2-α)= cotα,cot(3π/2-α)= tanα (k·π/2±α) ,其中k∈Z

    注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;

    当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;

    用角(k·π/2±α)所在的象限确定等式右边三角函数的正负. 例:tan(3π/2 +α)= -cotα

    ∵在这个式子中k=3,是奇数,因此等式右边应变为cot

    又,∵角(3π/2 +α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα. 三角函数在各象限中的正负分布

    sin:第一第二象限中为正;第三第四象限中为负 cos:第一第四象限中为正;第二第三象限中为负 cot、tan:第一第三象限中为正;第二第四象限中为负