(2012•肇庆二模)如图,将Rt△AOB绕点O旋转得到Rt△COD,若∠BOC=130°,则∠AOD度数为(  )

1个回答

  • 解题思路:由Rt△AOB绕点O旋转得到Rt△COD,根据旋转的性质得到∠COD=∠AOB=90°,则∠AOC=∠BOC-∠AOB=130°-90°=40°,然后利用∠AOD=∠COD-∠AOC即可求出∠AOD的度数.

    ∵Rt△AOB绕点O旋转得到Rt△COD,

    ∴∠COD=∠AOB=90°,

    又∵∠BOC=130°,

    ∴∠AOC=∠BOC-∠AOB=130°-90°=40°,

    ∴∠AOD=∠COD-∠AOC=90°-40°=50°.

    故选B.

    点评:

    本题考点: 旋转的性质.

    考点点评: 本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.