1.
abcd=1,a²+b²+c²+d²+ab+ac+ad+bc+bd+cd≥10[(abcd)^5]开10次方=10
所以,a²+b²+c²+d²+ab+ac+ad+bc+bd+cd的最小值是10,当a=b=c=d=1时取得
2.
正整数n使得2n+1及3n+1都是平方数,则n只能是1,5n+3=8不是质数
3.
6ab-9a+10b-15=(3a+5)(2b-3)=303-15=288=2^5×3²
而3a+5不是3的倍数,2b-3是奇数,则2b-3只能是9,3a+5=2^5=32
即可求出:a=9,b=6,a+b=15
4.
a^5+a+1
=a^5-a²+a²+a+1
=a²(a³-1)+(a²+a+1)
=a²(a-1)(a²+a+1)+(a²+a+1)
=(a²+a+1)(a³-a²+1)
5.
2a+a²+a²b²+2+2ab=0
(a+1)²+(ab+1)²=0
因此有:a+1=0,ab+1=0,
解得:a=-1,b=1
所以a+b=0