如图,扇形OAB的圆心角为90°,分别以OA,OB为直径在扇形内作半圆,P和Q分别表示两个阴影部分的面积,那么P和Q的大

6个回答

  • 解题思路:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分阴影面积.

    ∵扇形OAB的圆心角为90°,假设扇形半径为a,

    ∴扇形面积为:

    90×π×a2

    360=

    πa2

    4,

    半圆面积为:[1/2]×π×([a/2])2=

    πa2

    8,

    ∴SQ+SM =SM+SP=

    πa2

    8,

    ∴SQ=SP

    即P=Q,

    故选:A.

    点评:

    本题考点: 扇形面积的计算.

    考点点评: 此题主要考查了扇形面积求法,根据已知得出半圆面积以及扇形面积是解题关键.