解题思路:根据已知先证明Rt△BDM≌Rt△CDM1从而得到BM=CM1,然后再证明△MDN≌△M1DN,从而推出MN=NM1=NC-CM1=NC-MB.
在证明时,需添加辅助线,采用“截长补短”法,借助三角形全等进行证明.
(1)BM+CN=MN
证明:如图,延长AC至M1,使CM1=BM,连接DM1
由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°.
∵BD=CD,
∴∠MDB=∠M1DC,DM=DM1
∴∠MDM1=(120°-∠MDB)+∠M1DC=120°.
又∵∠MDN=60°,
∴∠M1DN=∠MDN=60°.
∴△MDN≌△M1DN.
∴MN=NM1=NC+CM1=NC+MB.
(2)附加题:CN-BM=MN
证明:如图,在CN上截取CM1,使CM1=BM,连接MN,DM1
∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠DBM=∠DCM1=90°.
∵BD=CD,
∴Rt△BDM≌Rt△CDM1
∴∠MDB=∠M1DC,DM=DM1
∵∠BDM+∠BDN=60°,
∴∠CDM1+∠BDN=60°.
∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°.
∴∠M1DN=∠MDN.
∵ND=ND,
∴△MDN≌△M1DN.
∴MN=NM1=NC-CM1=NC-MB.
点评:
本题考点: 全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质.
考点点评: 此题主要考查等边三角形,等腰三角形的性质及三角形全等的判定等知识;正确作出辅助线是解答本题的关键.该题是一个纯图形探索证明题,注意培养自己的探索精神和钻研精神.