已知数列{an}中,a1=1,anan+1=(1/2)^n(n∈N*).

2个回答

  • (1)

    令n=2n,则a(2n)a(2n+1)=(1/2)^(2n)①

    令n=2n-1,则a(2n-1)a(2n)=(1/2)^(2n-1)②

    令n=2n+1,则a(2n+1)a(2n+2)=(1/2)^(2n+1)③

    ①÷②=a(2n+1)/a(2n-1)=1/2.

    ∴a(2n-1)为公比为1/2的等比数列.

    ③÷①=a(2n+2)/a(2n)=1/2.

    ∴a(2n)为公比为1/2的等比数列.

    证毕

    (2)

    令n=1,得a1×a2=1/2,则a2=1/2.

    ∴a(2n-1)=a1×(1/2)^(n-1)=(1/2)^(n-1)

    a(2n)=a2×(1/2)^(n-1)=(1/2)^n

    ∴T2n=(a1+a3+...+a(2n-1)+(a2+a4+...+a2n)

    =2(1-(1/2)^n)+(1-(1/2)^n)

    =3-3(1/2)^n

    综上,T2n=3-3(1/2)^n.

    (3)题目不全.