(1)f(x)=(m+n)•m=m•m+n•m
=(sin²x+1)+[(sinx*√3cosx-1*(1/2)]=sin²x+1+√3sinxcosx-1/2=(1-cos2x)/2 +(√3/2)sin2x +1/2
=1+sin(2x +π/6);
f(x) 的最小正周期是 π;
(2)不等式 f(x)-t = 1+sin(2x +π/6)-t = 0 在x∈[π/4,π/2]上有解,则
π/2 +π/6≤ (2x+π/6) ≤π +π/6,-1/2≤sin(2x +π/6)≤1;
即 -1/2≤ t-1 ≤1,1/2≤ t ≤2;