当n≥2时,
Sn+1 = 3Sn + 1,S n = 3S(n-1) + 1,
两式相减,得a(n+1) = 3an.
由已知,得a1 + a2 = 3a1 + 1.
∴a2 = 3.
由此可见对一切 n∈N*,an不等于0,且(an+1)/an=3
所以{an}是以3为公比的等比数列,
故an = 3^(n-1)
当n≥2时,
Sn+1 = 3Sn + 1,S n = 3S(n-1) + 1,
两式相减,得a(n+1) = 3an.
由已知,得a1 + a2 = 3a1 + 1.
∴a2 = 3.
由此可见对一切 n∈N*,an不等于0,且(an+1)/an=3
所以{an}是以3为公比的等比数列,
故an = 3^(n-1)