设AC=b,AB=c,BC=a,
∵AD是Rt△ABC的角平分线,
∴b/c=CD/BD=CD/(a-CD)=(a-BD)/BD
∴CD=ab/(b+c),BD=ac/(b+c)
∴2BD/BC=2c/(b+c)
∵AD²=AC²+DC²,
∴AD²/AC²=(AC²+DC²)/AC²=1+DC²/AC²=1+[ab/(b+c)]²/b²=1+a²/(b+c)²=[(b+c)²+a²]/(b+c)²
=(a²+b²+c²+2bc)/(b+c)²=(2c²+2bc)/(b+c)²=2c/(b+c)
∴AC²/AD²=BC/2BD