运用技巧可以顺利的解决问题,如下面的问题就是采用了“借”的技巧.

1个回答

  • 借1/(1-x)

    原式1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)

    =1/(x+1)+1/(1-x) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =2/(1-x^2)+2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =4/(1-x^4)+4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =8/(1-x^8)-8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =16/(1-x^16)-16/(1-x^16)-1/(1-x)

    =-1/(1-x) 1/(x+1)+1/(1-x)=2/(1-x^2)所以

    1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)

    =1/(1-x)+1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =16/(1-x^16)-16/(1-x^16)-1/(1-x)

    =1/(x-1)1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)

    =[1/(1-x)+1/(x+1)] +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =[2/(1-x^2)+2/(1+x^2) ] + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)

    =……

    =16/(1-x^16)-16/(1-x^16)-1/(1-x)

    =-1/(1-x) 2/(1-x^2)所以有16/(1-x^16)=8/(1+x^8)+8/(1-x^8)

    8/(1-x^8)=4/(1+x^4)+4/(1-x^4)

    4/(1-x^4)=2/(1+x^2)+2/(1-x^2)

    最后

    1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)

    =1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-{8/(1+x^8)+2/(1+x^2) + 4/(1+x^4)+1/(1+x)+1/(1-x)}

    =1/(x-1)