借1/(1-x)
原式1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)
=1/(x+1)+1/(1-x) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=2/(1-x^2)+2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=4/(1-x^4)+4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=8/(1-x^8)-8/(1+x^8)-16/(1-x^16)-1/(1-x)
=16/(1-x^16)-16/(1-x^16)-1/(1-x)
=-1/(1-x) 1/(x+1)+1/(1-x)=2/(1-x^2)所以
1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)
=1/(1-x)+1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=16/(1-x^16)-16/(1-x^16)-1/(1-x)
=1/(x-1)1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)
=[1/(1-x)+1/(x+1)] +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=[2/(1-x^2)+2/(1+x^2) ] + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)-1/(1-x)
=……
=16/(1-x^16)-16/(1-x^16)-1/(1-x)
=-1/(1-x) 2/(1-x^2)所以有16/(1-x^16)=8/(1+x^8)+8/(1-x^8)
8/(1-x^8)=4/(1+x^4)+4/(1-x^4)
4/(1-x^4)=2/(1+x^2)+2/(1-x^2)
最后
1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-16/(1-x^16)
=1/(x+1) +2/(1+x^2) + 4/(1+x^4)+8/(1+x^8)-{8/(1+x^8)+2/(1+x^2) + 4/(1+x^4)+1/(1+x)+1/(1-x)}
=1/(x-1)