我四处拼凑而来1、2870 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程.其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容.
设:S=12+22+32+…+n2
另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想.有了此步设题,第一:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即
S1=2S+n3+2n(1+2+3+…+n)………………………………………………..(1)
第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为:
S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:
22+42+62…+(2n)2=22(12+22+32+…+n2)=4S……………………………………..(2)
12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2
= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2
=22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n
=22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n
=4S-4(1+2+3+…+n)+n……………………………………………………………..(3)
由(2)+ (3)得:S1=8S-4(1+2+3+…+n)+n…………………………………………..(4)
由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n
即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n
= n[n2+n(1+n)+2(1+n)-1]
= n(2n2+3n+1)
= n(n+1)(2n+1)
S= n(n+1)(2n+1)/ 6
亦即:S=12+22+32+…+n2= n(n+1)(2n+1)/6……………………………………(5)
以上可得各自然数平方和公式为n(n+1)(2n+1)/6,其中n为最后一位自然数.
由(5)代入(2)得自然数偶数平方和公式为2n(n+1)(2n+1)/3,其中2n为最后一位自然数.
由(5)代入(3)得自然数奇数平方和公式为n(2n-1)(2n+1)/3,其中2n-1为最后一位自然数.
由自然数平方和公式推导自然数立方和公式
设S=13+23+33+…+n3……………………………………………………….(1)
有S=n3+(n-1)3+(n-2)3+…+13……………………………………………...(2)
由(1)+ (2)得:2S=n3+13+(n-1)3+23+(n-2)3+33+…+n3+13
=(n+1)(n2-n+1)
+
(n+1)[(n-1)2-2(n-1)+22)
+
(n+1)[(n-2)2-3(n-2)+32)
+
.
.
.
+
(n+1)(12-n(n-n+1)(n-n+1+ n2)
即2S=( n+1)[2(12+22+32+…+n2)-n-2(n-1) -3(n-2)-…-n (n-n+1)] ………………...(3)
由12+22+32+…+n2=n(n+1)(2n+1)/ 6代入(2)得:
2S=(n+1)[2n(n+ 1)(2n+1)/6-n-2n-3n-…nn+2×1+3×2+…+n(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n(1+2+3+…n)+(1+1)×1+(2+1)×2+…+(n-1+1)(n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2 (1+n)/2+12+1+22+2+…+(n-1)2+ (n-1)]
=(n+1)[2n(n+1)(2n+1)/6-n2(1+n)/2+12+22+…+(n-1)2+1 +2+…+ (n-1)] ……...(4)
由12+22+…+(n-1)2= n(n+1)(2n+1)/6-n 2,1+2+…+(n-1)=n(n-1)/2代入(4)得:
2S=(n+1)[3n(n+1)(2n+1)/6-n2+n(n-1)/2
=n2(n+1)2/2
即S=13+23+33+…+n3= n2(n+1)2/4
结论:自然数的立方和公式为n2(n+1)2/4,其中n为自然数.
自然数偶数立方和公式推导
设S=23+43+63+…+(2n)3
有S=23(13+23+33+…+n3)=8n2(n+1)2/4=2n2(n+1) 2
结论:自然数偶数的立方和公式为2n2(n+1)2,其中2n为最后一位自然偶数.
自然数奇数立方和公式推导
设S=13+23+33+…+(2n) 3
由自然数的立方和公式为n2(n+1)2/4,其中n为自然数代入左边
有n2(2n+1)2=23+43+63+…+(2n) 3+13+33+53…+(2n-1)3
=2n2(n+1)2+13+33+53…+(2n-1)3
移项得:13+33+53…+(2n-1)3 =n2(2n+1)2-2n2(n+1)2
=n2(2n2-1)
结论:自然数奇数的立方和公式为n2(2n2-1),其中2n-1为最后一位自然奇数,即n的取值.
2、1^3+2^3+……+n^3=[n(n+1)/2]^2所以1三次加2的三次方加3的三次方一直加到100的三次方=[100(100+1)/2]²=(50x101)²=5050²=25502500
因为1³+2³=(1+2)²=9 1³+2³=9 1³+2³+3³+4³=100 ﹙1+2+3+4﹚²=100所以 推导出公式:1³+2³+3³+.+n³=﹙1+2+3+.+n﹚²
3、类似 (286×7+5)^2009 ,实际上看5的2009次方
5^2009=625^502*5=(89*7+2)^502*5 ,实际上看2^502*5
2^502*5=1024^50*20=(146*7+2)^50*20 ,实际上看2^50*20
2^50*20=1024^5*20=(146*7+2)^5*20,实际上看2^5*20=640
640除以7余3,那么余数就是3
我四处拼凑而来