limn→∞ n(√n²+1 -n)
2个回答
limn→∞ n[√(n²+1)-n][√(n²+1)+n]/[√(n²+1)+n]
=limn→∞ n/[√(n²+1)+n]
=limn→∞ 1/[√(1 +1/n²)+1]
=1
相关问题
limn^(1/n) n-->∞=?
limn→∞(1+1/n)^n=e
limn→∞根号(n^2+1)/n+1
limn →∞ n^2+1/2n^2+n-3=
求limn→∞3n+(−2)n3n+1+(−2)n+1.
求limn→∞(nsin1/n)^n^2
limn→∞时(1+2+3+…n-1)/n²
limn→∞arctan(n!)×(根号n+1-根号n)^2=
计算:limn^2[(k/n)-(1/n+1)-(1/n+2)-……-(1/n+k)]
证明:lima^(1/n)=1 n-->∞ (a为常数),limn^(1/n)=1 n-->∞,