∵
正弦函数在x=0处的带佩亚诺型的泰勒展开式:
sinx=
n
k=1(?1)k?1
x2k?1
(2k?1)!+o(x2k?1)
∴
函数在x=0处的三阶泰勒展开式分别为:
sinx=x?
x3
3!+o(x3)
sin(3x)=3x?
(3x)3
3!+o(x3)
∴
f(x)=3sinx-sin(3x)
=3[x?
x3
3!+o(x3)]?[3x?
(3x)3
3!+o(x3)]
=3x?
x3
2?3x+
9x3
2+o(x3)
=4x3+o(x3)
∴
lim
x→0
3sinx?sin(3x)
cxk=
lim
x→0
4x3+o(x3)
cxk=1
对于分子,分母均为多项式且x→0来讲,当极限为非零常数时,分子和分母的最高幂次相等
∴k=3
∴c=4
故选:C