设过原点O的直线方程为y=kx,代入椭圆方程得:
x^2/3+(kx)^2=1,化简
x^2+3k^2x^2=3
(1+3k^2)x^2-3=0
设A点坐标为(xa,ya),B点坐标为(xb,yb),
xa+xb=0
xaxb=-3/(1+3k^2)
A,B两点在直线y=kx上,满足直线方程:
ya=kxa
yb=kxb
ya-yb=k(xa-xb)
所以|AB|=√[(xa-xb)^2+(ya-yb)^2]
=√[(xa-xb)^2+k^2(xa-xb)^2]
=√(1+k^2)*√[(xa+xb)^2-4xaxb]
=√(1+k^2)*√[12/(1+3k^2)]
设直线PA的方程为:y=mx+2,代入椭圆方程得:
x^2/3+m^2x^2+4mx+4=1
(1+3m^2)x^2+12mx+11=0
设Q点坐标(xq,yq)
xa+xq=-12m/(1+3m^2)
xa*xq=11/(1+3m^2)
Q在点直线PA上,yq=mxq+2
Q点到直线AB的距离为:
d=|kxq-yq|/√(1+k^2)
=|kxq-mxq-2|/√(1+k^2)
=|(k-m)[-12m/(1+3m^2)-xa]-2|/√(1+k^2)
A(xa,ya),P(0,2),所以
m=(ya-0)/(xa-2)=ya/(xa-2)=k/(1-2/xa)
xa^2=3/(1+3k^2)
三角形面积为:|AB|*d/2,然后代入,可以求得最值,计算有点麻烦,思路就是这样的