证明:∵EF⊥AD,AD平分∠BAC,
∴∠1=∠2,∠APE=∠APF=90°,
又∵∠AEF=180°-∠1-∠APE,∠AFE=180°-∠2-∠APF,
∴∠AEF=∠AFE,
∵∠CFM=∠AFE,
∴∠AEF=∠AFE=∠CFM,
∵∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,
∴∠B+∠M=∠ACB-∠M,
∴∠M=1/2(∠ACB-∠B)
证明:∵EF⊥AD,AD平分∠BAC,
∴∠1=∠2,∠APE=∠APF=90°,
又∵∠AEF=180°-∠1-∠APE,∠AFE=180°-∠2-∠APF,
∴∠AEF=∠AFE,
∵∠CFM=∠AFE,
∴∠AEF=∠AFE=∠CFM,
∵∠AEF=∠B+∠M,∠MFC=∠ACB-∠M,
∴∠B+∠M=∠ACB-∠M,
∴∠M=1/2(∠ACB-∠B)