【1】略.
点P的轨迹是单位圆,方程为x²+y²=1.
由上面结论,可设点P(cost,sint).(t∈R).
∴向量PM=(-1-cost,-sint),向量PN=(-cost,1-sint).
∴PM•PN=(-1-cost,-sint) •(-cost,1-sint).
=(1+cost)cost+(sint-1)sint
=1+cost-sint
=1-(√2)sin[t-(π/4)].
∴1-√2≤PM•PN≤1+√2.
【1】略.
点P的轨迹是单位圆,方程为x²+y²=1.
由上面结论,可设点P(cost,sint).(t∈R).
∴向量PM=(-1-cost,-sint),向量PN=(-cost,1-sint).
∴PM•PN=(-1-cost,-sint) •(-cost,1-sint).
=(1+cost)cost+(sint-1)sint
=1+cost-sint
=1-(√2)sin[t-(π/4)].
∴1-√2≤PM•PN≤1+√2.