BE与DF的关系为BE=DF,BE⊥DF
证明:
∵AF=1/2AB=1/2AD,AE=1/2AD
∴AE=AF
∵AB=AD,∠DAF=∠BSE=90°
∴△ABE≌△ADF
∴BE=DF
延长BE,交DF于点G
∵△ABE≌△ADF
∴∠ADF=∠ABE
∵∠ADF+∠F=90°
∴∠ABG+∠F=90°
∴∠BGF=90°
即BE⊥DF
BE与DF的关系为BE=DF,BE⊥DF
证明:
∵AF=1/2AB=1/2AD,AE=1/2AD
∴AE=AF
∵AB=AD,∠DAF=∠BSE=90°
∴△ABE≌△ADF
∴BE=DF
延长BE,交DF于点G
∵△ABE≌△ADF
∴∠ADF=∠ABE
∵∠ADF+∠F=90°
∴∠ABG+∠F=90°
∴∠BGF=90°
即BE⊥DF