a^2*b+b^2*c+c^2*a - a*b^2+b*c^2+c*a^2
=(a^2*b+b^2*c+c^2*a)-(ab^2+bc^2+ca^2)
=(a^2*b-ca^2)+(b^2*c-bc^2)+(c^2*a-ab^2)
=a^2(b-c)+bc(b-c)-a(b^2-c^2)
=a^2(b-c)+bc(b-c)-a(b-c)(b+c)
=(b-c)(a^2+bc-ab-ac)
=(b-c)(a-b)(a-c)
因为:a>b>c
b-c>0,a-b>0,a-c>0
所以(b-c)(a-b)(a-c)>0
a^2*b+b^2*c+c^2*a > a*b^2+b*c^2+c*a^2