已知圆x^2+y^2=4上一点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.

1个回答

  • (1)求线段AP中点的轨迹方程

    AP中点(x,y)

    xP=2x-2,yP=2y

    x^2+y^2=4

    (2x-2)^2+(2y)^2=4

    AP中点的轨迹方程:(x-1)^2+y^2=1

    (2)若角PBQ=90°,求PQ中点的轨迹方程

    PQ中点(x,y)

    xP+xQ=2x,(xP+xQ)^2=(2x)^2

    (xP)^2+(xQ)^2+2xP*xQ=4x^2.(1)

    yP+yQ=2y

    (yP)^2+(yQ)^2+2yP*yQ=4y^2.(2)

    (xP)^2+(yP)^2=4.(3)

    (xQ)^2+(yQ)^2=4.(4)

    角PBQ=90°

    k(PB)*k(QB)=-1

    [(yP-1)/(xP-1)]*[(yQ-1)/(xQ-1)]=-1

    xP*xQ+yP*yQ=(xP+xQ)+(yP+yQ)-2=2x+2y-2

    2xP*xQ+2yP*yQ=4x+4y-4.(5)

    (1)+(2)-(3)-(4)-(5):

    x^2+y^2-x-y-1=0

    PQ中点的轨迹方程圆:

    (x-0.5)^2+(y-0.5)^2=1.5