已知函数f(x)=asinx+bcosx x属于R的图像过点A(0,1)
f(x)=0+b=1 b=1
过B(π/2,1) f(x)=a+0=1 a=1
所以f(x)=sinx+cosx
f(x)=sinx+cosx
=√2(sin(x+π/4)
f(x)=sinx+cosx最大值=√2 x=π/4
f(x)的单调递增区间(-3π/4+2kπ,π/4+2kπ)
已知函数f(x)=asinx+bcosx x属于R的图像过点A(0,1)
f(x)=0+b=1 b=1
过B(π/2,1) f(x)=a+0=1 a=1
所以f(x)=sinx+cosx
f(x)=sinx+cosx
=√2(sin(x+π/4)
f(x)=sinx+cosx最大值=√2 x=π/4
f(x)的单调递增区间(-3π/4+2kπ,π/4+2kπ)