(1)数列∶2,f﹙a1﹚,f﹙a2﹚,...f﹙an﹚,2n﹢4﹙n∈N*)成等差,数列为n+2项,2n﹢4=2+(n+2-1)d,d=2,f(an)-f[a(n-1)]=2,㏒a{(an)/[a(n-1)]}=2,(an)/[a(n-1)]=a²,数列﹛an﹜为首项为a²,公比q=a²的等比数列,an=a^(2n);
(2)bn﹦an.f(an),bn=2n*4^n,Sn=2[4+2*4²+3*4³+┄┄┄+n*4^n],4Sn=2[4²+2*4³+┄┄┄+(n-1)*4^n+n*4^(n+1)],后式减前式得:3Sn=2[n*4^(n+1)-(4+4²+4³+┄┄┄+4^n)]=2[n*4^(n+1)-4(4^n-1)/3],Sn=[(6n-2)*4^(n+1)+8]/9;
(3)bn>f¯¹﹙t﹚,t=an=2^(2n),2n*4^n>1/2n,n∈N*上式成立,实数t的取值范围:t≥4.