分析:(1)由直线y=3x+3交x轴于A点,交y轴于B点,即可求得点A与B的坐标,又由过A、B两点的抛物线交x轴于另一点C(3,0),利用两点式法即可求得抛物线的解析式;
(2)分别从AB=BQ,AQ=BQ,AB=AQ三方面去分析,注意抓住线段的求解方法,借助于方程求解即可求得答案.
(1)∵当x=0时,y=3,
当y=0时,x=﹣1,
∴A(﹣1,0),B(0,3),
∵C(3,0),
设抛物线的解析式为y=a(x+1)(x﹣3),
∴3=a×1×(﹣3),
∴a=﹣1,
∴此抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;
(2)存在.
①∵抛物线的对称轴为:x= =1,
∴如图对称轴与x轴的交点即为Q1,
∵OA=OQ1,BO⊥AQ1,
∴“当Q1B=AB时,设Q(1,q),
∴1+(q﹣3)2=10,
∴q=0,或q=6,
∴Q(1,0)或Q(1,6).
当Q2A=Q2B时,设Q2的坐标为(1,m),
∴22+m2=12+(3﹣m)2,
∴m=1,
∴Q2(1,1);
当Q3A=AB时,设Q3(1,n),
∴22+n2=12+32,
∴n=± ,
∴Q3(1,),Q4(1,﹣ ).
∴符合条件的Q点坐标为Q1(1,0),Q2(1,1),Q3(1,),Q4(1,﹣ ),Q5(1,6)..