如图,
ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F,
①证明:△AOE≌△COF
②证明:四边形AECF是平行四边形;
③在已知条件外,请你再添加一个条件,使四边形AECF是矩形.
①证明:∵四边形ABCD是平行四边形(已知),
∴AD∥BC(平行四边形的对边平行),
OA=OC(平行四边形的对角线互相平分),
∴∠1=∠2,∠3=∠4(两直线平行,内错角相等),
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS);
②证明:由①得:△AOE≌△COF,
∴OE=OF(全等三角形的对应边相等),
又OA=OC(已证),
∴四边形AECF是平行四边形(对角线互相平分的四边形为平行四边形);
③若添加AC=EF,
理由:由②得四边形AECF是平行四边形,且对角线AC=EF,
∴AECF为矩形(对角线相等的平行四边形为矩形);
若添加AF⊥BC,
理由:由②得四边形AECF是平行四边形,
又AF⊥BC,∴∠AFC=90°(垂直定义),
∴AECF为矩形(有一个角为直角的平行四边形为矩形).