设数列{an},an=1+2+...+n=n(n+1)/2
1/an=2/[n(n+1)]=2[1/n -1/(n+1)]
设数列{1/an}前n项和为Tn
Tn=1/a1+1/a2+...+1/an
=2[1/1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
令n=2014,得T2014=2×2014/(2014+1)=4028/2015
非常简单,可以求任意n项的倒数和.
设数列{an},an=1+2+...+n=n(n+1)/2
1/an=2/[n(n+1)]=2[1/n -1/(n+1)]
设数列{1/an}前n项和为Tn
Tn=1/a1+1/a2+...+1/an
=2[1/1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=2[1- 1/(n+1)]
=2n/(n+1)
令n=2014,得T2014=2×2014/(2014+1)=4028/2015
非常简单,可以求任意n项的倒数和.