√S2=√S1+d =√a1+d ,
S2=(√a1+d)²= a1+d²+2d√a1
a2=S2-S1=a1+d²+2d√a1-a1=d²+2d√a1
a3=2a2-a1=2(d²+2d√a1)-a1
an-a(n-1)=a3-a2=d²+2d√a1-a1
a4-a3=d²+2d√a1-a1 ,
a4=a3+d²+2d√a1-a1=3(d²+2d√a1)-2a1
∴ an=(n-1)(d²+2d√a1)-(n-2)a1
√S2=√S1+d =√a1+d ,
S2=(√a1+d)²= a1+d²+2d√a1
a2=S2-S1=a1+d²+2d√a1-a1=d²+2d√a1
a3=2a2-a1=2(d²+2d√a1)-a1
an-a(n-1)=a3-a2=d²+2d√a1-a1
a4-a3=d²+2d√a1-a1 ,
a4=a3+d²+2d√a1-a1=3(d²+2d√a1)-2a1
∴ an=(n-1)(d²+2d√a1)-(n-2)a1