∠EAB=∠BCF=∠D=∠ABC
∴∠EBA=∠CBF
又∵∠EBF=2∠ABC
∴∠EBA+∠CBF=∠ABC
∴∠EBA=∠CBF=1/2∠ABC=1/2∠BCF=1/2∠EAB
即∠EBA=1/2∠EAB
∠CBF=1/2∠BCF
∴∠EBA=∠CBF=30°
∴AB=CD=2AE=8
BF=根3CF=6根3
∴S=CDxBF=48根3
∠EAB=∠BCF=∠D=∠ABC
∴∠EBA=∠CBF
又∵∠EBF=2∠ABC
∴∠EBA+∠CBF=∠ABC
∴∠EBA=∠CBF=1/2∠ABC=1/2∠BCF=1/2∠EAB
即∠EBA=1/2∠EAB
∠CBF=1/2∠BCF
∴∠EBA=∠CBF=30°
∴AB=CD=2AE=8
BF=根3CF=6根3
∴S=CDxBF=48根3