在等差数列{an}中,若a3+a9+a15+a17=8,则a11=______.

1个回答

  • 解题思路:设出等差数列的公差,把a3,a9,a15,a17分别用首项和公差表示,整理后得答案.

    ∵数列{an}是等差数列,设其公差为d,

    ∵a3+a9+a15+a17=8,

    ∴(a1+2d)+(a1+8d)+(a1+14d)+(a1+16d)=8

    即4a1+40d=8,

    ∴a1+10d=2.

    即a11=2.

    故答案为:2.

    点评:

    本题考点: 等差数列的性质.

    考点点评: 本题考查了等差数列的性质,考查了等差数列的通项公式,考查了学生的整体运算能力,属中低档题.