如图,作PM⊥BC于M,AN⊥BC于N
S△PBC=1/2PM*BC
S△ABC=1/2AN*BC
S△PBC/S△ABC=PM/AN=PD/AD=x/(x+6)
同理S△PAC/S△ABC=y/(y+6),S△PAB/S△ABC=z/(z+6)
S△ABC=S△PBC+S△PAC+S△PAB
∴x/(x+6)=y/(y+6)=z/(z+6)=1
即1-6/(x+6)+1-6(y+6)+1-6/(z+6)=1
∴3/(x+6)+3/(y+6)+3/(z+6)=1
3(yz+zx+xy)+36(x+y+z)+324
=xyz+6(xy+yz+zx)+36(x+y+z)+216
∵xy+yx+zx=28
∴xyz=108-3(xy+yz+zx)=24