少条件,a,b,c应非负,
设
X=(13a+1)
Y=(13b+1)
Z=(13c+1)
=>
X+Y+Z=16
X,Y,Z>=1
下证:
√X +√Y >= 1 + √(X+Y-1)
2√XY >= 2√(X+Y-1)
XY - X - Y + 1>=0
(X-1)(Y-1)>=0
同理:
√(X+Y-1) + √Z >= 1 + √(X+Y+Z-2)
( (Z-1)(X+Y-1 - 1)>=0)
所以
√X+√Y+√Z
>= 1+√X+Y-1 +√Z
>= 1 + 1 + √(X+Y+Z-2)
= 2 +√14