f(x)+f(1/x)=x²/(1+x²)+(1/x)²/[1+(1/x)²]=(x²+1)/(1+x²)=1
所以
f(1)+f(2)+f(1/2)+f(3)+f(1/3)+……+f(2006)+f(1/2006)
=f(1)+[f(2)+f(1/2)]+……+[f(2006)+f(1/2006)]
=1/2+1+……+1
=1/2+2005
=2005.5
f(x)+f(1/x)=x²/(1+x²)+(1/x)²/[1+(1/x)²]=(x²+1)/(1+x²)=1
所以
f(1)+f(2)+f(1/2)+f(3)+f(1/3)+……+f(2006)+f(1/2006)
=f(1)+[f(2)+f(1/2)]+……+[f(2006)+f(1/2006)]
=1/2+1+……+1
=1/2+2005
=2005.5