解题思路:①由MN与圆O相切于点C,根据弦切角定理可得∠ACE=∠ABC,又由AB为圆O直径,可得AC⊥BC,则可证得Rt△AEC≌Rt△ADC,同理可得Rt△BCD≌Rt△BCF,根据全等三角形的对应边相等,即可得CD=CF=CE;
②由①可证得Rt△ACE∽Rt△CBF,根据相似三角形的对应边成比例,与CE=CF=[1/2]EF,即可证得EF2=4AE•BF;
③由Rt△BCD≌Rt△BCF与Rt△ACE≌Rt△GCF即可证得AD•DB=FG•FB;
④由△AME∽△CMD与Rt△ACD∽Rt△BCF.利用相似三角形的对应边成比例,即可求得MC•CF=MA•BF.
∵MN与圆O相切于点C,
∴∠ACE=∠ABC,
又∵AB为圆O直径,
∴AC⊥BC,
∵CD⊥AB,
∴∠ABC=90°-∠BAC=90°-∠DAC=∠ACD,
∴∠ACE=∠ACD,
∵∠AEC=∠ADC=90°,
在Rt△AEC和Rt△ADC中,
∠AEC=∠ADC
∠ACE=∠ACD
AC=AC,
∴Rt△AEC≌Rt△ADC(AAS),
∴CD=CE,
同理,Rt△BCD≌Rt△BCF,
∴CD=CE=CF,
故①正确;
由①的过程知:∠ACE=∠DBC=∠FBC,
∵∠AEC=∠CFB=90°,
∴Rt△ACE∽Rt△CBF,
∴[AE/CF=
CE
BF],
∴CE•CF=AE•BF,
由①的结论知,CE=CF=[1/2]EF,
∴[1/4]EF2=AE•BF
∴EF2=4AE•BF,
故②正确;
由①过程知,Rt△BCD≌Rt△BCF
∴DB=FB…(1)
∵MN为⊙O切线,
∴∠FCG=∠FBC=∠ABC=∠ACE,
由①结论知,CE=CF,
∵∠AEC=∠GFC=90°,
在Rt△ACE和Rt△GCF中,
∠AEC=∠GFC
CE=CF
∠ACE=∠FCG,
∴Rt△ACE≌Rt△GCF(ASA),
而由①的过程知,Rt△ACE≌Rt△ACD,
∴Rt△ACD≌Rt△GCF,
∴AD=FG…(2)
由(1)(2)得到:AD•DB=FG•FB;
故③正确;
∵∠M=∠M,∠AEM=∠ADC,
∴△AME∽△CMD,
∴[MC/DC=
MA
AE],
∵AE=AD,
∴[MC/DC=
MA
DA],
∴[MC/MA=
MA
DA],…(3)
又∵Rt△ACD∽Rt△BCF,
∴[DC/DA=
BF
CF],…(4)
由(3)(4)得到:[MC/MA=
BF
CF],
∴MC•CF=MA•BF;
故④正确.
故选D.
点评:
本题考点: 切线的性质;相似三角形的判定与性质.
考点点评: 此题考查了圆周角定理,切线的性质,相似三角形与全等三角形的判定与性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意比例的性质.