证明:
连接AC,BC
∵AB是⊙O的直径
∴∠ADB=∠ACB=90°
∵OC⊥AB,AO=OB(即OC为AB的中垂线)
∴AC=BC
∵∠CAD与∠CBD都是⊙O中同弦(CD)所对应的圆周角
∴∠CAD=∠CBD
∵BE=AD
∴△CDA≌△CEB
∴CD=CE,∠DCA=∠ECB
∴∠DCE=∠DCA+∠ACE=∠BCE+∠ACE=∠ACB=90°
∴△CDE为等腰直角三角形
证明:
连接AC,BC
∵AB是⊙O的直径
∴∠ADB=∠ACB=90°
∵OC⊥AB,AO=OB(即OC为AB的中垂线)
∴AC=BC
∵∠CAD与∠CBD都是⊙O中同弦(CD)所对应的圆周角
∴∠CAD=∠CBD
∵BE=AD
∴△CDA≌△CEB
∴CD=CE,∠DCA=∠ECB
∴∠DCE=∠DCA+∠ACE=∠BCE+∠ACE=∠ACB=90°
∴△CDE为等腰直角三角形