最详细的说明在这个链接里:
另外有个简洁明了的在这里:
二元一次方程常用解法解法一般来说有两种:
1.代入消元法:2,加减消元法.
这两种解法在初中数学教科书中有详细叙述这里就不在说了,
我们来看一下教科书中没有的,但比较适用的几种解法
(一)加减-代入混合使用的方法.
例1,13x+14y=41 (1)
14x+13y=40 (2)
(2)-(1)得
x-y=-1
x=y-1 (3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
(二)换元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因.
(3)另类换元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可写为:5t+6*4t=29
29t=29
t=1
所以x=1,y=4