dn=(c1*c2*..*cn)^(1/n)
因为 cn=c1*q^(n-1)
所以 c1*c2*...*cn=c1^n * q^(0+1+...+n-1)=c1^n * q^(n*(n-1)/2)
(c1*c2*..*cn)^(1/n)=c1*q^((n-1)/2)=c1*q^(-1/2) * q^(n/2)
成等比数列,公比为q^(1/2)
dn=(c1*c2*..*cn)^(1/n)
因为 cn=c1*q^(n-1)
所以 c1*c2*...*cn=c1^n * q^(0+1+...+n-1)=c1^n * q^(n*(n-1)/2)
(c1*c2*..*cn)^(1/n)=c1*q^((n-1)/2)=c1*q^(-1/2) * q^(n/2)
成等比数列,公比为q^(1/2)