如图:AB是⊙O的直径,直线MN与⊙O相交于点E、F,AD⊥MN,垂足为D.求证:(1)∠BAE=∠DAF
1个回答
这题目简单
连接BF
∠BAE=∠BFE
∵∠BFA=90°∠ADF=90°
∴∠BFE=∠DAF
∴∠BAE=∠DAF
相关问题
AB是圆O的直径 ,直线MN与圆O相交于点E,AD垂直于MN 求角BAF=角DAF
已知:如图,直线MN切⊙O于点C,AB为⊙O的直径,延长BA交直线MN于M点,AE⊥MN,BF⊥MN,E、F分别为垂足,
已知,如图,MN是⊙O的弦,AB是⊙O的直径,AB⊥MN,垂足为点P,半径OC、OD分别交MN与点E、F,且OE=OF.
如图,AB为圆O直径,直线MN交圆O于C,D两点,AE垂直于MN于E,BF垂直于MN于F ⑴求证CE=DF,OE=OF
已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.求证:
已知AB是⊙O的直径,C是⊙O上一点,过C的切线与AB的延长线交于点E,AD⊥EC,垂足为D,AD与⊙O相交于点F,求证
已知,直线MN交圆O于A、B两点,AC是直径,AD平分角CAM交圆O于点D,过点D作DE⊥MN,垂足为E
如图,AD是圆O的直径,BC切圆O于点D,AB,AC与圆O相交于点E,F.求证:AE•AB=AF•AC.
如图,△ABC是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.
如图(1),AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.