有tan(a+b)=(tana+tanb)/(1-tanatanb)
所以tan(B+π/3)=[tanB+tan(π/3)]/[1-tanB*tan(π/3)]= -√3
===> (tanB+√3)/(1-√3*tanB)= -√3
===> (tanB+√3)=3*tanB-√3
===> 2tanB=2√3
===> tanB=√3
又因0
有tan(a+b)=(tana+tanb)/(1-tanatanb)
所以tan(B+π/3)=[tanB+tan(π/3)]/[1-tanB*tan(π/3)]= -√3
===> (tanB+√3)/(1-√3*tanB)= -√3
===> (tanB+√3)=3*tanB-√3
===> 2tanB=2√3
===> tanB=√3
又因0