设k=(n-3)/(m+2),
k为M和点(-2,3)的直线斜率.
求直线与圆相切时直线的斜率即可,但有两个切线,取较大者;(较小者为最小直.)
x^2+y^2-4x-14y+45=0 ①
y-3=k(x+2) ②
消去y,得
(k^2+1)x^2+4(k^2-2k-1)x+4(k^2-4k+3)=0
有两个相同的根
16(k^2-2k-1)^2-16(k^2+1)(k^2-4k+3)=0
化简得
k^2-4k+1=0
取较大的根
k(max)=2+根号3 .最大值
k(min)=2-根号3.最小值