设z1=a+bi
z2=c+di
|z1+z2|=|a+bi+c+di|=|(a+c)+(b+d)i|=[(a+c)^2+(b+d)^2]^(1/2)
所以|z1+z2|^2|=|a+bi+c+di||^2
=[(a+c)^2+(b+d)^2]
=[a^2+2ac+c^2+b^2+2bd+d^2]
=[a^2+b^2+c^2+d^2+2(ac+bd)]
设z1=a+bi
z2=c+di
|z1+z2|=|a+bi+c+di|=|(a+c)+(b+d)i|=[(a+c)^2+(b+d)^2]^(1/2)
所以|z1+z2|^2|=|a+bi+c+di||^2
=[(a+c)^2+(b+d)^2]
=[a^2+2ac+c^2+b^2+2bd+d^2]
=[a^2+b^2+c^2+d^2+2(ac+bd)]