∵a=√3+1, b=√3-1
∴ a+b=2√3
a-b=2
a·b=2
∴﹙a-b﹚/a÷﹙a²-2ab-b²﹚/a
=﹙a-b﹚/a·a/﹙a²-2ab-b²﹚
=﹙a-b﹚/[﹙a-b﹚﹙a+b﹚-2ab]
= ab/[ab﹙a+b﹚-2ab]
=1/﹙a+b-2﹚
=1/﹙2√3-2﹚
=﹙√3+1﹚/4.
∵a=√3+1, b=√3-1
∴ a+b=2√3
a-b=2
a·b=2
∴﹙a-b﹚/a÷﹙a²-2ab-b²﹚/a
=﹙a-b﹚/a·a/﹙a²-2ab-b²﹚
=﹙a-b﹚/[﹙a-b﹚﹙a+b﹚-2ab]
= ab/[ab﹙a+b﹚-2ab]
=1/﹙a+b-2﹚
=1/﹙2√3-2﹚
=﹙√3+1﹚/4.