设f(x)=(x-1)*g(x)+7;
f(x)=(x-2)k(x)+12;
设g(x)=p(x)*(x-2)+r_1;
------>f(x)=(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-1)*r_1+7=(x-2)k(x)+12;
设(x-1)*r_1+7=(x-2)*q(x)+r_2;
------>f(x) =(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-2)*q(x)+r_2
=(x-2)*[(x-1)*p(x)+q(x)]+r_2
=(x-2)k(x)+12;
------>(x-1)*p(x)+q(x)=k(x) AND r_2=12
------>(x-1)*r_1=(x-2)*[k(x)-(x-1)*p(x)]+5
------>(x-2)*r_1+r_1=(x-2)*[k(x)-(x-1)*p(x)]+5
------>r_1=(x-2)*[k(x)-(x-1)*p(x)-r_1]+5;
因为5 显然不能被x-2整除,故(x-2)除r_1的余式是5;
故(x-2)(x-1)除(x-1)*r_1的余式是5;
设(x-1)*r_1=(x-2)(x-1)*u(x)+5;
so
------>f(x)=(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-1)*r_1+7
=(x-2)*(x-1)*p(x)+(x-2)(x-1)*u(x)+5+7;
=(x-2)*(x-1)*[p(x)+u(x)]+12;
so
余式为12.