求多项式的余式设f(x)为实系数多项式,以x-1除之,余数是7,以x-2除之,余数是12,则f(x)除以(x-1)(x-

2个回答

  • 设f(x)=(x-1)*g(x)+7;

    f(x)=(x-2)k(x)+12;

    设g(x)=p(x)*(x-2)+r_1;

    ------>f(x)=(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-1)*r_1+7=(x-2)k(x)+12;

    设(x-1)*r_1+7=(x-2)*q(x)+r_2;

    ------>f(x) =(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-2)*q(x)+r_2

    =(x-2)*[(x-1)*p(x)+q(x)]+r_2

    =(x-2)k(x)+12;

    ------>(x-1)*p(x)+q(x)=k(x) AND r_2=12

    ------>(x-1)*r_1=(x-2)*[k(x)-(x-1)*p(x)]+5

    ------>(x-2)*r_1+r_1=(x-2)*[k(x)-(x-1)*p(x)]+5

    ------>r_1=(x-2)*[k(x)-(x-1)*p(x)-r_1]+5;

    因为5 显然不能被x-2整除,故(x-2)除r_1的余式是5;

    故(x-2)(x-1)除(x-1)*r_1的余式是5;

    设(x-1)*r_1=(x-2)(x-1)*u(x)+5;

    so

    ------>f(x)=(x-1)*[p(x)*(x-2)+r_1]+7=(x-2)*(x-1)*p(x)+(x-1)*r_1+7

    =(x-2)*(x-1)*p(x)+(x-2)(x-1)*u(x)+5+7;

    =(x-2)*(x-1)*[p(x)+u(x)]+12;

    so

    余式为12.