利用夹逼准则如图可知极限值是10.经济数学团队帮你解答,请及时采纳.谢谢!
求极限题lim n次根号(1^n+2^n+3^n+4^n+ +10^n)n→∞
1个回答
相关问题
-
求极限 lim(n→∞)[根号(n^2+4n+5)-(n-1)] =
-
lim(n→∞)√(3^n)/(n*2^n)和lim(n→∞)√(n^2)/(3^n)求极限,
-
求1.lim(3n-(3n^2+2n)/(n-1)) 2.lim(8+1/(n+1)) 3.lim根号n(根号(n+1)
-
求极限lim(n→无穷) (三次根号下n^2)*sin /(n+1)
-
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
-
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
-
求下列极限~(大一级别)1.lim(n→∞)3n^2+n+1/n^3+4n^2-12.lim(n→∞)(1/n^2+2/
-
求极限:lim(1/n+2^2/n^2+3^2/n^3+...+n^2/n^n) n→∞
-
求下列极限:(1)lim 3n^2-2n+1/8-n^3 n→∞ (2)lim 1+2+3+…+n/n^2 n→∞
-
求极限 lim【1/(n^2+n+1)+2/(n^2+n+2)+3/(n^2+n+3)+……+n/(n^2+n+n)】n