⑴∠DAE=∠EAC-∠DAC=∠BAC -∠DAC=(180°-∠B-∠ACB)-(90°-∠ACB )
=90°-∠B-∠ACB-90°+∠ACB=∠ACB-∠B
⑵∠CAG=90°-∠BAC ∠G=∠DAE+60° ∠GCA=(180°-∠ACB)/2=90°-∠ACB
∠CAG+∠G+∠GCA=180°故有
∠B+∠DAE=30°
由⑴代入⑵得∠B+∠ACB-∠B=30° 得∠ACB=60°望采纳
⑴∠DAE=∠EAC-∠DAC=∠BAC -∠DAC=(180°-∠B-∠ACB)-(90°-∠ACB )
=90°-∠B-∠ACB-90°+∠ACB=∠ACB-∠B
⑵∠CAG=90°-∠BAC ∠G=∠DAE+60° ∠GCA=(180°-∠ACB)/2=90°-∠ACB
∠CAG+∠G+∠GCA=180°故有
∠B+∠DAE=30°
由⑴代入⑵得∠B+∠ACB-∠B=30° 得∠ACB=60°望采纳