设f(x)在[a,b]上连续,且a<f(x)<b,证明:在(a,b)内至少存在一点c,使f(c)=c
1个回答
令F(x)=f(x)-x
那么F(a)=f(a)-a0
由于F(x)连续
因此F(x)在(a,b)之间存有零点
因此存在c,使得F(c)=0
即f(c)=c
相关问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
设f(x)在(a,b)上连续,且f(a)=f(b),证明:存在点c属于(a,b)使得f(C)=f(c+b-a/2)
设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0;证明存在唯一一点c属于(a,b),
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
设f(X)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一个A,使[b*f(b)-a*f(a)
高数题.若f(x)在【a,b】上有二阶导f''(x),且f'(a)=f'(b)=0,证明在(a,b)内至少存在一点c,满
设f(x)在【a,b】上连续,在(a,b)内二阶可导,且f(a)=f(b)=f(c),a