解题思路:当电场竖直向上时,小球对斜面无压力,可知电场力和重力大小相等;当电场竖直向下时,小球受到向下的力为2mg;当小球恰好离开斜面时,在垂直于斜面的方向上合力为零,由此可求出此时的速度;在此过程中,电势能和重力势能转化为动能,由动能定理即可求出小球下滑的距离.
由静止可知:qE=mg
当小球恰好离开斜面时,对小球受力分析,受竖直向下的重力、电场力和垂直于斜面向上的洛伦兹力,此时在垂直于斜面方向上合外力为零.
则有:(qE+mg)cosθ=qvB
由动能定理得:(qE+mg)sinθ•x=[1/2]mv2;
解得:x=
m2gcos230°
q2B2sin30°=
3m2g
2B2q2.
答:小球能在斜面上滑行的距离为
3m2g
2B2q2.
点评:
本题考点: 带电粒子在混合场中的运动.
考点点评: 该题考察了带电物体在复合场中的运动情况,解决此类问题要求我们要对带电物体进行正确的受力分析,要注意找出当小球离开斜面时的受力情况是解决该题的关键.